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SINGLE-PHASE PROBLEMS OF THE MELTING OF SOLID WEDGES 

A. D. Chernyshov and O. P. Reztsov UDC 536.42 

Accurate solutions obtained in quasisteady formulation take the form of finite sums 
and are valid from a plane two-face aperture angle of k~ where k is any simple frac- 
tion. 

The present work is a continuation of [I] and uses the same notation and formulation 
of the problem of the melting of solids. 

i. In Cartesian coordinates (y, z), the quasisteady heat-conduction equation takes the 
form [i] 

O~U : OzU Vo OU 
ay~ + ~  + a az =o.  (1) 

The boundary conditions of the problem are 

U(y,  z ) l z=O,  U(y, z)~<O, r , , E ~ ,  (2)  

U(y, Z)--~Uo,,~O as rm --)- oe , (3)  

whe re  ~ i s  t h e  r e g i o n  o f  m e l t e d  s o l i d  wedge .  D i m e n s i o n l e s s  v a r i a b l e s  a r e  i n t r o d u c e d  

~j = (z sin @j - -  y cos @J Vo/a, ] = 1, 2. (4)  

The angles O~ and Oa are measured counterclockwise from the positive direction of the 
axis to a straight line passing through the corresponding face of the plane wedge (Fig. i). 
The equations of the faces of the melting plane wedge here are: ~a = 0, $= = 0; for the 
region inside the wedge, ~x > 0~ ~2 > 0. The straight line ~ = const and ~2 = const are 
parallel to the corresponding planes of the wedge. Note that in geometric terms C x and S a 
are the distances from the point with coordinates (y, z) to the corresponding face of the 
wedge, multiplied by Vo/a. With this definition of @I and @2~ the aperture angle of the wedge 
~o corresponds to the expression 

0,2 - -  01 - -  % = n - -  % .  ( 5 )  

The heat-conduction equation (i) is now written in new variables 

Y 

~ 
- -  - - - - - -  > - -  - z 

Fig. i. Cross section of the melting 
wedge (shaded region). 
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62U O~U OW OU OU 
o ~  ' + 6 ~  + 2B c~,c,g=~ "~ ~- A t e + A 2  0~2 0, (6) 

Using Eq. (13), 
the induction method 

A,=-sin@t, A~ ==sin@~, B == cos% ~ = @~--@i. (7) 

The fundamental solution of Eq. (6) is sought in the form 

U = exp - -  ( ~ 1  + ~2) .  (8)  

Substituting Eq. (8) into Eq. (6), the characteristic equation obtained is 

E (~, 6) = az + ~ + 2Ba~ - -  A~= - -  A2~ - -  0. (9) 

The  f u n c t i o n  o f  Eq.  (8)  i s  a f u n d a m e n t a l  s o l u t i o n  o f  Eq .  (6)  i n  t h e  c a s e  w h e r e  t h e  
parameter a and 8 satisfy Eq. (9), i.e., the point (a, 8) lies on the characteristic ellipse 
E(a, 8) = 0. 

The algorithm for calculating the spectra {a n} and {8n} (n = 0, i, 2, ...) consists in 
the following procedure. Let ao = 8o = 0. The values at and 81 are found from the condi- 
tion that the points (at~1) and (a18o) lie on the characteristic ellipse. From the equations 
E(ao, 81) = 0, E(ax, Bo) = 0, it is found that at = At, Bx = A2. All the subsequent a n and 
8 n when n = 2, 3, ... are found from the equations 

E (~• ~,) = o, E ( ~ ,  ~ , )  = 0. ( lO)  

From an analysis of the first pair of quadratic relations in Eq. (I0), a recurrence rela- 
tion is obtained for an, and from an analysis of the second pair of recurrence relation for 
B n is obtained, in the form 

a n =  Aa--=n-2--2B~n-1,  ~,~ = A~--~n-2--2B=n-1,  n = 2, 3 . . . .  ( 1 1 )  

Using the recurrence relations in Eq. (Ii), it may be proven that the coefficients a n 
and 8n may be written in the form of linear and homogeneous dependences on At and Aa 

=,,=A~P.(B)--A=Q,,(B),  ~ . = A 2 P . ( B ) - - A ~ Q . ( B ) ,  (12 )  

where Pn(B) is a polynomial of order (n -- I) if n is odd and of order (n -- 2) if n is even; 
Qn(B) is a polynomial of order (n -- i) if n is even and of order (n -- 2) of n is odd. 

Substituting Eq. (12) into Eq. (ii) gives the following recurrence formulas for Pn and 

Qn 

P ~ =  1 - - P n - 2 + 2 B Q , _ I ,  Q, ,=2BPn-I - -Qn-2 ,  n = 2 ,  3 . . . .  ( 1 3 )  

The expressions for the first seven polynomials Pn and Qn are as follows 

P o = 0 ,  P1 = P~ = 1, P3 = P ~ - : 4 B Z ,  P s = P 8  ~ ( 1 - - 4 8 2 ) 2 '  (14) 

Qo=Q~=O, Q~=Q~=2B,  Q~=Q~=2B(4B z - l ) ,  

Q6 = Q, = 4B ( 1 - -  4B 2) (1 - -  2B2). 

the following properties may be proven for the polynomials Pn and Qn by 

P2m--1 = P~m, Qem-2 = O2m--l, m = 1, 2 . . . .  ( 1 5 )  

For further investigation of the properties of the characteristic equation, the follow- 
ing quantities must be considered 

S,~ -= 2B (P.P,,_, + Q.Q,~_,) - -  2p.Q,,_, - 2P,,_~Q,~ -t- Q,~ + Q,~-,, 

T., = P~ + Q], --  2BP,~Qn --  P,,. (16)  

It may be shown by induction that, for the polynomials Pn and Qn from Eq. (13), S n and T n are 
zero for any n 

Sn=O,  Tn---=-O, n =  I, 2 . . . .  ( 17 )  

The proof involves the definitions of Pn and Qn from Eq. (13) and also the inductive as- 
sumption that Sn_1 = 0, Tn-t = 0, and Tn_a = O. 

By definition, Eq. (8) is the fundamental solution when a = a n and B = Bn+1 or a = C~n+ I 
and 8 = 8n, when n = I, 2, .... In addition to such solutions, closing solutions are re- 
quired, satisfying the conditions 
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= ~ , , ,  B =~ ~ ,  ~(~,,, ~,,)-= 0.  ( 1 8 )  

Below, Eq. (18) is called the closure condition. The closure condition obtained from 
Eqs. (9) and (18) is 

E (u,,, ~,) = a] -[- ~]-'k 2 B a , ~ ,  --A~a,,--A2~,~ = 0. (19) 

The closure conditions in Eq. (19) imposes a constraint only on the difference of the 
angles (@~ -- O1). To prove this, expressions for a n and B n from Eq. (12) are substituted 
into Eq. (19). After transformations, it is found that 

E(~,~, ~n) = (A~ + A~) T , -  2AIA2 [2P,,Q~ - -  B (P] _~ Q~)Z _ Qnl = 0. (20)  

Since T n = 0, Eq. (20) simplifies to give 

AIA~ [2P,~Qn - -  B ( P] -k Q]) - -  Q,] = 0. (21)  

Let AIAa # 0 (the case when AI = 0 or A2 = 0 is considered below). Then it follows from 
Eq. (21) that the closure condition in Eq. (18) does not depend on AI and A2 and impose a 
constraint only on B, i.e., on the difference of angles (G2 -- @i). First setting AI = A2 in 
Eq. (9), i.e., a n = B n, and then AI = --A2, i.e., a n =--B n, the closure condition is simplified 
and breaks down into the following polynomial equations 

P , ~ = Q ~ a n d ( P ~ - - Q ~ ) ( I + B ) =  1, (22)  

P n : - - Q ~  and ( P ~ + Q , ~ ) ( 1 - - B ) =  1, n :  1, 2 . . . .  (23)  

Two of the relations in Eqs. (22) and (23) must be regarded as the equations for finding 
the roots for B. The first relation in Eq. (22) or Eq. (23) is a polynomial of (n -- l)-th 
order and the second is a polynomial of n-th order. Thus, (2n -- i) values of B, denoted by 
Bm, and the corresponding angles ~m (m = i, 2 .... , 2n -- i) may be determined from Eq. (22) 
or Eq. (23). It may be proven by induction that, for any n, one of the roots B m is zero and 
correspondingly ~ = ~/2. Analysis of the properties of the set of roots B and the correspond- 
ing angles ~m permits their distribution over the following two groups formspecified n 

m ~  
I )  r  - - ~ - -  r  

n + l  
B,~ ~--Bn-m+l, m = 1, 2 . . . . .  n ,  

(24) 

II) ~(n+l)-(2n-1)-- ( k - - n ) z l  , k = n - [ - 1 ,  n--k2, . . . ,  ( 2n - - l ) .  
17. 

It is evident from Eq. (24) that all the '~m and B m from the second group at the given n 
are repeated in the first group with (n - I). For this reason, all the elements of the second 
group @k and B k must be omitted and only the elements Om and B m of the first group need be 
considered. 

2. Suppose that the melting plane wedge has an aperture angle ~o such that 

fn~ 
~0 = ~--% - - ,  (25) 

n+l 

where n is any natural number and m may take one of the values (I, 2, ..., n), i.e., the 
angle ~o must be written in terms of the aperture angle 4o in the form ~o = %~, where ~ is 
a regular fraction. Then the denominator of this fraction is (n + I) and its numerator is m. 
In fact, the aperture angle of the wedge may take any rational value. 

In this case, the accurate solution of the problem in Eqs. (1)-(3) takes the form of a 
sum 

n 

U = U~ {1-[-- ~ (-- 1)P [ ( ~V~p_1} -[- ( ~p_1~p ) ] -- (-- | )n { ~n~n ) } , (26) 
p=l 

w h e r e  ( a i~  } - exp - -  (=i~1 ~- ~j~2), B = cos ~0, A1A2 =I= O. 

F o r  s p e c i f i e d  a n g l e s  82 a n d  02 w h i c h  d e t e r m i n e  t h e  o r i e n t a t i o n  o f  t h e  wedge  f a c e s  w i t h  
r e s p e c t  t o  t h e  z a x i s  a n d  t h e  a p e r t u r e  a n g l e  o f  t h e  w e d g e ,  B, A1, A=, Co,  m, n a r e  c a l c u l a t e d .  
Then  t h e  s p e c t r a  {a i }  and  {Bi}  a r e  c a l c u l a t e d  f r o m  t h e  r e c u r r e n c e  f o r m u l a  i n  Eq.  ( 1 1 ) ,  w i t h  
i = 2 ,  3 . . . .  , n .  S u b s t i t u t i n g  t h e  r e s u l t s  i n t o  Eq.  ( 2 6 ) ,  t h e  s p e c i f i c  f o r m  o f  t h e  a c c u r a t e  
s o l u t i o n  i s  o b t a i n e d  a n a l y t i c a l l y .  
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It may be shown that the function in Eq. (26) constructed in this way is the accurate 
solution of the bounary problem in Eqs, (1)-(3). In fact, as a consequence of the closure 
conditions, the points (ap, Bp-:), (ap-t, Bp) (p = I, 2, ..., n) and the point (anBn) lie by 
construction on the characteristic ellipse in Eq. (9). Therefore, the function in Eq, (26) 
satisfies the head-conduction equation (i). 

It may be established by direct verification that, when ~ = 0 or ~= = 0, the right- 
hand side of Eq. (26) identically vanishes, i.e., the boundary conditions at Z from Eq. (2) 
are satisfied. 

With increasing distance from the faces of the wedge, ~ -~ = or ~= -~ =, respectively. 
These properties of the variables ~t and ~a ensure that the inequality in Eq. (2) and the 
conditions in Eq. (3) are satisfied. In addition, the solution in Eq. (26) has the property 
that, on moving away from one face parallel to the other face, this solution transforms to 
the well-known one-dimensional solution of [2], of the type in Eq. (8). 

Consider the case when AtA2 = 0, which corresponds to coincidence of one fact of the 
wedge with the z axis. Suppose that A= = 0, so as to be specific; then the closure condi- 
tion in Eq. (18) will be satisfied for any (anBn). In this case, the coefficients a n and Bn 
are calculated from the formula 

~z. == ALP.,, ~. ----- --A1Q.. (27) 
Using Eq. (27) and the properties of the polynomials Pn and Qn in Eq. (15), it may be 

proven that in this case the right-hand side of Eq. (26) is identically zero for any IBI < i. 
Hence the solution of Eqs. (1)-(3) in the form in Eq. (26) is only valid when AIA2 # O. 

The case when the melting wedge is symmetric relative to the z axis and the temperature 
is a field is also symmetric is of definite interest 

O~=-~--O~, U(y ,  z ) = U ( - - Y ,  z). (28) 

Then the solution in Eq. (26) for the melting of a symmetric plane wedge with an aperture 
angle 20t simplifies to the form 

n [ 1 U=U~{I+~(--1)P2 exp-- (~v-l-ep_OesinO~ • 
p=l  

X Ch[-~9-(O~p--O~p_l) yCOS(~l]--( - 1)nexp--2an Voa zsirlOt} . 

NOTATION 

U, temperature; Z, surface of the melting plane wedge; ~, region inside wedge; (y, z), 
rectangular Cartesian coordinates; Vo, velocity of translational motion of surface of melting 
wedge relative to material points of this wedge; a, thermal diffusivity; U~, temperature at 
points of the solid infinitely far from Z; rm, shortest distance from points of the body to 
Z; ~t, ~=, auxiliary variables; 0t, 0=, angles of inclination of the wedge surfaces to the z 
axis; Vn, velocity of motion of the surface Z projected onto its normal; n, normal to surface 
Z; 0, density; At, A2, B, a n, Bn, auxiliary constants; ~o, aperture angle of wedge; Pn, Qn, 
polynomials; m, n, natural numbers. 
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